A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

نویسنده

  • V. Zaccaria
چکیده

Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates. Published by Elsevier B.V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Reduction of a Solid Oxide Fuel Cell (SOFC) for Control Purposes

Fuel cells belong to an avant-garde technology family for a wide variety of applications including micro-power, transportation power, stationary power for buildings and other distributed generation applications. The first objective of this contribution is to find a suitable reduced model of a Solid Oxide Fuel Cell (SOFC). The derived reduced model is then used to design a state estimator. I...

متن کامل

Fuzzy Control of Fuel Cell Distributed Generation Systems

The operation of Fuel Cell Distributed Generation (FCDG) systems in distribution systems is introduced by modeling, controller design, and simulation study of a Solid Oxide Fuel Cell (SOFC) distributed generation (DG) system. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic contro...

متن کامل

Dynamic Response Analysis of the Planar and Tubular Solid Oxide Fuel Cells to the Inlet Air Mass Flow Rate Variation

The purpose of present study is to investigate the dynamic response of two conventional types of solid oxide fuel cells to the inlet air mass flow rate variation. A dynamic compartmental model based on CFD principles is developed for two typical planar and tubular SOFC designs. The model accounts for transport processes (heat and mass transfer), diffusion processes, electrochemical processes, a...

متن کامل

A two-dimensional numerical model of a planar solid oxide fuel cell

A two-dimensional CFD model of a planar solid oxide fuel cell (SOFC) has been developed.This model can predict the performance of SOFC at various operating and design conditions.The effect of Knudsen diffusion is accounted in the porous electrode (backing) and reaction zonelayers. The mathematical model solves conservation of electrons and ions and conservation ofspecies. The model is formulate...

متن کامل

A Study on Performance of Solid Oxide Fuel Cell-Stirling Engine Cycle Combined System- Part I: SOFC Simulation by Programming in Matlab and Modeling in Hysys

In recent years, using new methods in utilization of energy resources has become necessary due to environmental pollution and restriction of energy resources. The hybrid system presented in this article produced power with SOFC and Stirling engine. The purpose is to analyze a 50 kW Solid Oxide Fuel Cell that could produce enough thermal energy for a 10 kW Stirling engine working in the hybrid s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016